Anti-Gravity Wheel Explained?

Someone sent me this YouTube video. It claimed to have explained Laithwaite’s Big Wheel experiments as explained by classical mechanics. This I had to see.

The reason why I was particularly interested in this video was because, some months earlier I had spoken to a Boeing engineer who had agreed that these observations could not be solved using classical mechanics.

This video is an excellent example of sloppy research. After you have watched this video please review with my comments. Unfortunately, in spite of their academic backgrounds, the experimenters do not have a clue how to conduct world class research. Very unfortunate.

The first thing I noticed about this video’s claimed observations was that this video demonstration contradicted Laithwaite’s meticulous demonstrations as found here, http://www.gyroscopes.org/gallery.asp.

Here are the errors in this video to watch for, in their experimental method.

1. The experimenter introduces systemic errors by rotating the disc about himself while standing on the weight scale. This is observed as bounces around the 91 kg weight.

2. If the disc spin is low enough the weight change is smaller than that introduced by the bounces and therefore masked by the observations, resulting in “null” observations.

3. At 0.54 mins, he says “. . . if it does not get lighter why does it feel lighter?”. What was that again? It feels lighter? So what he is saying is that his body is telling a different story from his experimental observations! Not good.

4. At 2.49 mins, the experimenter tries to reverse the rotation, and says “it is hard to go back. . .” You can see that the disc weight has increased as it has fallen much lower and closer to the ground. This experimenter ignores this evidence.

5. At 2.57 mins, we are not sure what he is doing, but there is a weight gain from 431.0 to 431.2 i.e. you can observe weight gain, but those two folks ignore that fact.

6. At 3.29 mins, the weight is dropping all by itself.

7. At 3:36 mins, they keep messing with the experiment. Why?

I conclude this is a very sloppy experiment lacking experimental rigor. Further the experimenter himself agrees that his experiment is a “shaky mess”. Noting that Laithwaite’s own experiments (http://www.gyroscopes.org/gallery.asp) were meticulous by comparison. You have to watch Laithwaite’s experiments to understand how meticulous he was.

And this is the crux of the matter, to make the claim that this is within classical mechanics requires a derivation from classical mechanics of a formula that matches their observations. This they have not done.

Both Laithwaite’s discussion with his esteemed peers at Imperial College London and my encounter with the Boeing engineer affirm that this is not possible.

Summarizing: A sloppy experiment resulting in more disinformation. Very unfortunate as, if they were as meticulous as Laithwaite was, this could have turned into a PhD project and God knows what other discoveries they may have found.

Crisis In Physics

Per the Scientific American article “Super Symmetry and the Crisis in Physics”, the crisis in super symmetry physics is causing physicist to search for a new physics. Could this new physics be non-particle based? A physics closer to General Relativity than to either Quantum or String theories?

The Kline Directive: Economic Viability

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing.
2. Safety Awareness.
3. Economic Viability.
4. Theoretical-Empirical Relationship.
5. Technological Feasibility.

In this post I will explore Economic Viability. I have proposed the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later. Let us review the costs estimates of the various star drives just to reach the velocity of 0.1c, as detailed in previous blog posts:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Legal? Costs Estimates
Conventional Fuel Rockets: Yes Greater than US$1.19E+14
Antimatter Propulsion: Do Not Know. Between US$1.25E+20 and US$6.25E+21
Atomic Bomb Pulse Detonation: Illegal. This  technology was illegal as of 1963   per Partial   Test Ban Treaty Between $2.6E12 and $25.6E12. These are Project Orion original costs converted back to 2012 dollar. Requires anywhere between 300,000 and 30,000,000 bombs!!
Time Travel: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Quantum Foam Based Propulsion: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Small Black Hole Propulsion: Most Probably Illegal in the Future Using CERN to   estimate. At least US$9E+9 per annual budget.   CERN was founded 58 years ago in 1954. Therefore a guestimate of the total   expenditure required to reach its current technological standing is US$1.4E11.

Note Atomic Bomb numbers were updated on 10/18/2012 after Robert Steinhaus commented that costs estimates “are excessively high and unrealistic”. I researched the topic and found Project Orion details the costs, of $2.6E12 to $25.6E12 in2012 dollars, which are worse than my estimates.

These costs are humongous. The Everly Brothers said it the best.

Let’s step back and ask ourselves the question, is this the tool kit we have to achieve interstellar travel? Are we serious? Is this why DARPA – the organization that funds many strange projects – said it will take more than a 100 years? Are we not interested in doing something sooner? What happened to the spirit of the Kline Directive?

From a space exploration perspective economic viability is a strange criterion. It is not physics, neither is it engineering, and until recently, the space exploration community has been government funded to the point where realistic cost accountability is nonexistent.

Don’t get me wrong. This is not about agreeing to a payment scheme and providing the services as contracted. Government contractors have learned to do that very well. It is about standing on your own two feet, on a purely technology driven commercial basis. This is not an accounting problem, and accountants and CFOs cannot solve this. They would have no idea where to start. This is a physics and engineering problem that shows up as an economic viability problem that only physicists and engineers can solve.

The physics, materials, technology and manufacturing capability has evolved so much that companies like Planetary Resources, SpaceX, Orbital Sciences Corp, Virgin Galactic, and the Ad Astra Rocket Company are changing this economic viability equation. This is the spirit of the Kline Directive, to seek out what others would not.

So I ask the question, whom among you physicist and engineers would like to be engaged is this type of endeavor?

But first, let us learn a lesson from history to figure out what it takes. Take for example DARPA funding of the Gallium Arsenide. “One of DARPA’s lesser known accomplishments, semiconductor gallium arsenide received a push from a $600-million computer research program in the mid-1980s. Although more costly than silicon, the material has become central to wireless communications chips in everything from cellphones to satellites, thanks to its high electron mobility, which lets it work at higher frequencies.”

In the 1990s Gallium Arsenide semiconductors were so expensive that “silicon wafers could be considered free”. But before you jump in and say that is where current interstellar propulsion theories are, you need to note one more important factor.

The Gallium Arsenide technology had a parallel commercially proven technology in place, the silicon semiconductor technology. None of our interstellar propulsion technology ideas have anything comparable to a commercially successful parallel technology. (I forgot conventional rockets. Really?) A guesstimate, in today’s dollars, of what it would cost to develop interstellar travel propulsion given that we already had a parallel commercially proven technology, would be $1 billion, and DARPA would be the first in line to attempt this.

Given our theoretical physics and our current technological feasibility, this cost analysis would suggest that we require about 10 major technological innovations, each building on the other, before interstellar travel becomes feasible.

That is a very big step. Almost like reaching out to eternity. No wonder Prof Adam Franks in his July 24, 2012 New York Times Op-Ed, Alone in the Void, wrote “Short of a scientific miracle of the kind that has never occurred, our future history for millenniums will be played out on Earth”.

Therefore, we need to communicate to the theoretical physics community that they need get off the Theory of Everything locomotive and refocus on propulsion physics. In a later blog posting I will complete the Interstellar Challenge Matrix (ICM). Please use it to converse with your physicist colleagues and friends about the need to focus on propulsion physics.

In the spirit of the Kline Directive – bold, explore, seek & change – can we identify the 10 major technological innovations? Wouldn’t that keep you awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before?

PS. I was going to name the Interstellar Challenge Matrix (ICM), the Feasibility Matrix for Interstellar Travel (FMIT), then I realized that it would not catch on at MIT, and decided to stay with ICM.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Physics of the Zero Point Field and its Applications to Advanced Technology

I am very pleased to have received an email from Dr. Takaaki Musha of the Technical Research and Development Institute, Advanced Science-Technology Research Organization, Yokohama, Japan.

Dr. Musha and Prof. Mario J. Pinheiro will be publishing a book on electrogravitics including the electromagnetic propulsion systems, titled, “Physics of the Zero Point Field and Its Applications to Advanced Technology“, Nova Science Pub Inc. Publication date is Sept.25, 2012 (tomorrow).

To quote Dr. Musha:

“Space-time in a vacuum has generally been viewed as a transparent and ubiquitous empty continuum within which physical events take place. However quantum field theory and quantum electrodynamics views the vacuum as the sum total of all zero-point fluctuations of the vacuum electromagnetic field, arising from the continuous creation and annihilation of virtual particle pairs. It is this latter more contemporary view that is, for the first time, more fully explored in text form with Physics of the Zero Point Field. The scope of applications in this book range from the Casimir effect, the variation in zero-point energy at the boundaries of a region observable in nano-scale devices, to ideas for a proposed inertial drive as first described by Puthoff.”

Congratulations Dr. Musha & Prof. Pinheiro on your publication and above all, the completion of a book on this topic. Having done one myself I know it was not an easy endeavor.

And congratulations to Dr. Musha’s & Prof Pinheiro’s co-contributors, Prof. Claus Turtur, Mr. Gary Stephenson, & Dr. Thomas Valone.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Debunking the Black Hole Interstellar Drive

Louis Crane and Shawn Westmore co-authored the paper Are Black Hole Starships Possible? (http://arxiv.org/abs/0908.1803) that suggested that one could use Small Black Holes to propel starships close to the velocity of light for interstellar travel. To give them credit, they stated that this is at the “edge of possibility” and would only be possible in the very distant future:

“The purpose of this paper is to investigate whether it is possible to build artificial BHs of the appropriate size, and to employ them in powerplants and starships. The conclusion we reach is that it is just on the edge of possibility to do so, but that quantum gravity effects, as yet unknown, could change the picture either way. . . Many questions which arise in this program lead to calculations in general relativity which have not been done. Whatever the other merits of our proposal, we are confident it will pose many interesting problems for classical and quantum relativity.”

Note, BH = Black Holes

That is it. Crane & Westmore were presenting an academic exercise to pose “many interesting problems for classical and quantum relativity”.

However, others like James Messig and Paul Gilster and Marcus Chown have taken this to mean a real engineering problem that can be solved .  .  . Read their articles.

I only found out about Marcus Chown because Paul Gilster says “Chown does a good job with this material” quotes him, and I reproduce here,

“The resulting million-tonne black hole would be about the size of an atomic nucleus. The next step would be to manoeuvre it into the focal range of a parabolic mirror attached to the back of the crew quarters of a starship. Hawking radiation consists of all sorts of species of subatomic particles, but the most common will be gamma ray photons. Collimated into a parallel beam by the parabolic mirror, these would be the starship’s exhaust and would push it forward.”

What a parabolic mirror . . . with black holes in the same paragraph? This I must see. I traced Marcus Chown comments to his article Riding a black hole to reach the stars. Chown actually states this paragraph above.

Here are the problems with Marcus Chown statement & Paul Gilster’s unquestioning nod of authority to Chown’s statement.

1. How do you control a black how?
Small Black Hole radius = 0.6 x 10-18 m, in comparison assuming a spherical shape (Illinois University), the typical space between particles in the gas is 2×10-9 m, and the average distance between two bonded atoms in water is 2X10-10 m, and generally speaking the space between two bonded atoms is around 10-10 m.  That is one can fit 108 or 100 million Small Black Holes between two atoms in an average chemical compound.

So how does one control a 1,000,000 ton black hole that is more than million times smaller than an atom?

James Messig had suggested “Now imagine that a 1,000 metric ton rest mass ship could be coupled to the black hole via electrically charging the black hole or otherwise setting up a coupling field between the ship and the black hole”

Funny, James Messig contradicts Crane & Westmore. Crane & Westmore write “Note that if an isolated SBH is initially endowed with an electric charge, then it will quickly, and almost completely, radiate this charge away”.

But wait, there is another problem. Even if you could somehow electrify this black hole contraption the electric field breaks down into a discharge in air at 3kV/mm or about 1kV/mm in vacuum. So you cannot hold an black hole in a container with an electric field.

If you try, one whiff of the electron cloud on the atom and the electron cloud is gone. Another whiff. Another whiff. . . and before you know it there are millions of naked nuclei without their electron clouds, and an electric force based explosion, because the black hole (BH) of this size could whiz past matter striking down electron clouds in its path without ‘colliding’ with their nuclei.

Crane & Westmore write “As to confinement, a BH confines itself. We would need to avoid colliding with it or losing it, but it won’t explode.” They weren’t thinking about massively ionized matter because they had already stated “need to avoid colliding with it”. In their paper they were comparing black hole with antimatter.

Never mind the naked nuclei explosion that is a small matter. The real problem is that the black hole gets lost (because it is 0.6 x 10-18 m small) and it sucks out the air or the Earth, maybe the Sun. Don’t forget black holes love a good meal and will consume anything in their path and get bigger, and bigger . . . Need a black hole in our neighborhood? No thanks.

2. How do you maneuver the spacecraft?
Remember you are lugging around at least 1,000,000 tons of black hole matter to your 1 ton. Oops, I misspoke, the laws of physics require that it is actually the other way around. 1 ton of spacecraft is lugged around by 1,000,000 tons of black hole matter.

So how does one alter the direction of the Hawking Radiation that this 1,000,000 ton black hole is producing? Archimedes is reported to have said that if you give him a fulcrum long enough he could move the Earth. So what would be the equivalent of a “large enough fulcrum”? Hmmm. I know! Another black hole!

3. How do you collimated gamma rays with a parabolic mirror?
Really? Gamma radiation passes through everything we know of, if the material is not thick enough. Maybe Chown was reporting science fiction? Remember this was 2009. What do you think?

In all fairness I think the gamma ray problem is a more realistic problem than the black hole control & maneuvering problem.

No wonder, Prof. Adam Franks stated in his July 24, 2012 New York Times Op-Ed, Alone in the Void, “Short of a scientific miracle of the kind that has never occurred, our future history for millenniums will be played out on Earth”.

Done. Black hole interstellar drive debunked.

The next blog post in this debunking series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Stasis is Unrealistic

Stasis as a means to human space exploration beyond the Solar System is about 200 years away.

Why?

Primarily, one has prove that statis is safe and does not have long term effects, because nobody is going to fund a stasis based trip if there is even the remote possibility of DOA, Dead On Arrival.

For that you definitely need FDA approval, and that is about 7 years after the statis drug discovery. Discovery alone could take 10 years.

Then there post-FDA human testing. Can you find a small sample of a hundred people to volunteer being in test-statis for 40 years?

Would they wake up? What would the side effects be? How do you overcome these side effects? Then second round. Then third round, then . . .

Several cycles later, may be 200+ years, you’d have something safe. So statis is a nice idea but realistically not anytime soon.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Questioning the Foundations of Physics to Achieve Interstellar Travel: Part 3

Part 2 Here

Need For New Experiments To Test Quantum Mechanics & Relativity
We now have a new physics, without adding additional dimensions, that challenge the foundations of contemporary theories. Note very carefully, this is not about the ability of quantum mechanics or relativity to provide exact answers. That they do extremely well. With Ni fields, can we test for which is better or best?

A better nomenclature is a ‘single-structure test’, a test to validate the structure proposed by a hypothesis or theory. For example, Mercury’s precession is an excellent single-structure test for relativity, but it does not say how this compares to say, quantum gravity. On the other hand, a ‘dual-structure’ test would compare any two different competing theories. The recent three photon observation would be an example of a dual-structure test. Relativity requires that spacetime is smooth and continuous but quantum gravity requires spacetime to be “comprised of discrete, invisibly small building blocks”. This three photon observation showed that spacetime was smooth and continuous down to distances smaller than predicted by quantum gravity. Therefore, suggesting that both quantum foam and quantum gravity maybe in part or whole invalidated, while upholding relativity.

Therefore, the new tests would authenticate or invalidate Ni fields as opposed to quantum mechanics or relativity. That is, it is about testing for structure or principles not for exactness. Of course both competing theories must first pass the single-structure test for exactness, before they can be considered for a dual-structure test.

Is it possible to design a single-structure test that will either prove or disprove that virtual particles are the carrier of force? Up to today that I know of, this test has not been done. Maybe this is not possible. Things are different now. We have an alternate hypothesis, Ni fields, that force is expressed by the spatial gradient of time dilation. These are two very different principles. A dual-structure test could be developed that considers these differences.

Except for the three photon observation, it does not make sense to conduct a dual-structure test on relativity versus quantum mechanics as alternate hypotheses, because they operate in different domains, galactic versus Planck distances. Inserting a third alternative, Ni fields, could provide a means of developing more dual-structure tests for relativity and quantum mechanics with the Ni field as an alternate hypothesis.

Could we conduct a single-structure test on Ni fields? On a problem where all other physicist-engineers (i.e. quantum mechanics, relativity or classical) have failed to solve? Prof. Eric Laithwaite’s Big Wheel experiment would be such a problem. Until now no one has solved it. Not with classical mechanics, quantum mechanics, relativity or string theories. The Big Wheel experiment is basically this. Pivot a wheel to the end of a 3-ft (1 m) rod. Spin this wheel to 3,000 rpm or more. Then rotate this rod with the spinning wheel at the other end. The technical description is, rotate the spin vector.

It turns out that the solution to the Big Wheel experiment is that acceleration a=ωrωs√h is governed by the rotation ωr, spin ωs, and the physical structure √h, and produces weight loss and gain. This is the second big win for Ni fields. The first is the unification of gravitational, electromagnetic and mechanical forces.

How interesting. We have a mechanical construction that does not change its mass, but is able to produce force. If the spin and rotation are of like sense to the observer, the force is toward the observer. If unlike then the force is away from the observer. Going back to the Ω function, we note that in the Ω function, mass has been replaced by spin and rotation, and more importantly the change in the rotation and spin appears to be equivalent to a change in mass. Further work is required to develop an Ω function into a theoretical model.

The next step in challenging the foundations of physics is to replace the mass based Ω function with an electromagnetic function. The contemporary work to unify electromagnetism with gravity is focused on the tensor side. This essay, however, suggests that this may not be the case. If we can do this – which we should be able to do, as Ni fields explain electron motion in a magnetic field – the new physics will enable us to use electrical circuits to create force, and will one day replace all combustion engines.

Imagine getting to Mars in 2 hours.

The How Of Interstellar Travel
But gravity modification is not the means for interstellar travel because mass cannot be accelerated past the velocity of light. To develop interstellar propulsion technology requires thinking outside the box. One possibility is, how do we ‘arrive’ without ‘travelling’. Surprisingly, Nature shows us that this is possible. Both photons and particles with mass (electrons, protons & neutrons) have probabilistic natures. If these particles pass through a slit they ‘arrive’ at either sides of the slit, not just straight ahead! This ‘arrival’ is governed by probabilities. Therefore, interstellar travel technology requires an understanding of how probability is implemented in Nature, and we need to figure out how to control the ‘arrival’ event, somewhat like the Hitch Hiker’s Guide to the Galaxy’s ‘infinite improbability drive’.

Neither relativity nor quantum mechanics can or has attempted to explain probabilities. So what is probability? And, in the single slit experiment why does it decrease as one moves orthogonally away from the slit? I proposed that probabilities are a property of subspace and the way to interstellar travel. Subspace co-exists with spacetime but does not have the time dimension. So how do we test for subspace? If it is associated with probability, then can we determine tests that can confirm subspace? I have suggested one in my book. More interestingly, for starters, can we alter the probability of arrivals in the single slit experiments?

To challenge the foundations of pshyics, there are other questions we can ask. Why is the Doppler Effect not a special case of Gravitational Red/Blue shift? Why is the Hubble parameter not a constant? Can we find the answers? Will seeking these answers keep us awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before?

References
R.L. Amoroso, G. Hunter, M. Kafatos, and Vigier, Gravitation and Cosmology: From the Hubble Radius to the Plank Scale, Proceedings of a Symposium in Honour of the 80th Birthday of Jean-Pierre Vigier, Edited by Amoroso, R.L., Hunter, G., Kafatos, M., and Vigier, J-P., (Kluwer Academic Publishers, Boston, USA, 2002).

H. Bondi, Reviews of Modern Physics, 29-3, 423 (1957). G. Hooft, Found Phys 38, 733 (2008).

B.T. Solomon, “An Approach to Gravity Modification as a Propulsion Technology”, Space, Propulsion and Energy Sciences International Forum (SPESIF 2009), edited by Glen Robertson, AIP Conference Proceedings, 1103, 317 (2009).

B.T. Solomon, Phys. Essays 24, 327 (2011)

R. V. Wagoner, 26th SLAC Summer Institute on Particle Physics, SSI 98, 1 (1998).

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.